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1. Introduction

If we consider a vapor at equilibrium, then a certain change of the
thermodynamic parameters (e.g. a supercooling at a given density,
see Fig. 1) is able to remove the system into a nonequilibrium sta-
te. The vapor thus becomes supersaturated and a phase transition
can occur in the system. .

Inside the binodal region, the mechanism of such a first-order
phase transition is the homogeneous nucleation, if impurities are ab-
sent. In general, we can divide the process of phase separation in-
to three stages: nucleation, growth and coarsening. During the first
stage, in the supersaturated vapor small nuclei are formed by thermal
fluctuations. The critical size of these embryos is caused by the
formation of their surface. Overcritical: nuclei can grow to form
large macroscopic domains (droplets, see-alsc Fig. 2), undercriti-
cal nuclei diminish again.... P .

If we take into account. a-depletion -of the vapor in a finite
system, that means the vapor pressure .decreases because of nuclea-
tion, at a certain value ofi:supersaturation no more overcritical
droplets are able to arise.and ‘the.:growth process of the established
droplets is dominating.. For.a:more.:idecreased vapor pressure the
growth is converted to a..competition: process of the droplets, that
is the so-called Ostwald ripening. S T

Bespite intensive research:over @:period of about sixty years,
a number of problems concerning:theustheoretical description of the

c €
Fig. 1 Phase diagram of a gas-liquid system. The system is quenched
from the one-phase equilibrium to-a metastable state (binodal re-

mMo:M. Cp 1is the vapor density at the metastable state, Cegq the equi-
ibrium vapor density, cy the liquid density at the given temperature

Fig. 2 Density profile of a "classical" droplet (a), with linear
dimensions much larger than the correlation length (or interface
thickness) d_ and of a "nonclassical" droplet (b) of smaller size,
where interiBr and surface region are no longer clearly distin-
guishable /10/
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nucleation process remain not finally solved yet. Some of these
problems are the calculation of the formation energy of critical
clusters, the proper consideration of the depletion of the initially
metastable phase, the kinetic description of the relaxation into

the stable state of the coexisting phases and the influence of the
finiteness of the system.

Several models have been pointed out to clarify this situation
(/1-3/, see alsa /4,5/). The classical nucleation theory mainly tends
to calculate the stationary nucleation rate for the formation of
overcritical droplets in an infinite system using a one-parametric
description of the droplets. This theory was modified recently by
several authors /6-10/ completing the drdplet model. By means of a
continuous description of the u:mmm-mmumwmﬂwam system /11-14/ a
more general level of the theory is reached that allows the deter-
mination of some kinetic properties near the critical point /15-17/.
Recently, computer simulations have given a useful demonstration of
the earlier stages of the nucleation process and of the time-depen-
dent cluster evolution /18-20/. They also allow the calculation of
the formation energy of microclusters /21/.

For the late stage of the phase transition, the asymptotic solu-
tion of the kinetic equations can be cbtained from the theory of
Ostwald ripening /22-24/. A generalization of this result is given
by recent authors applying thermodynamic investigations /25,26/. A
thermodynamic analysis can lead to a deeper insight into the pro-
cess of phase separation, in particular, it gives general results for
the existence of stable droplets in principle and their dependence
on the thermodynamic parameters of the system, like particle num-
ber, system size, pressure and temperature /27-29/.

The classical and other nucleation theories suppose an infinite
system neglecting the alteration of the system properties caused by
the nucleation process. In finite systems, on the contrary, the limi-
ted system size and/or particle number yields a rather complicated
evolution of the droplet distribution (see also /30/). Another im-
portant contribution to a better description of the kinetic and the
stationary properties is that of a proper theory of surface effects
because the surface tension has a great influence on the formation
of critical droplets. While classically the capillarity approxima-
tion is used, modern theories apply curvature-depending surface
tensions resulting from statistic /21,31/ or thermodynamic /32,33/
investigations.

A-complete theory of the dynamics of first-order phase transi-
tions, including the stochastic formation of nuclei as well as the
late stage competition process within the droplet ensemble, would be
very helpful for a variety of physical processes. Many areas of
current interest in the material sciences involve the simultaneous
diffusional growth and dissolution of domains in a matrix /34/.

In this paper we describe a heterogeneous system with a finite
volume consisting of monomers (free particles) and different drops
(n-mers) as bound states. After studying the stochastic and kinetic
evolution of one droplet, we find for an ensemble of drops under
constrained conditions that larger drops grow at the expense of
smaller drops, which disappear. So the Ostwald ripening as a compe-
tition process quite similar to the selection in bio- or eco-systems
is related to the theory of selforganization /35/

2. Stochastic Evolution of QOne Droplet in a Finite System

In the following we consider the stochastic evolution of a droplet
in a supersaturated vapor. The thermodynamic constraints of the
system we fix as follows:

N = const, V = const, T = const , (2.1
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where N is the overall particle number, V the volume and T the tem-
perature of the system. The thermodynamic parameters must be chosen
in such a way, that the pressure for the (supposed) ideal vapor

(2.2)
of the saturated

N
P =y kT

is much larger than the equilibrium Pressure pg,
vapor. If we define an initial supersaturation

y = Eu . (2.3)
0 Poo .

then y_> y__, where y is a critical supersaturation as pointed

out H:oosmummn 3, mw<mmwo:m permission that a nucleation process

can occur. If we take into account the alteration of the pressure
due to nucleation, the actual supersaturation y(t) decreases with
time, starting from y . . .
We suppose that a mw:mwm droplet was formed in the system and
evolves due to the following kinetic mechanism:
w*
1A TR A

W G
(N-D1)A) === (N-1-DA, , (2.4)

A

where 1 is the number of particles bound in the droplet (1 € N). Both
reactions (2.4) are coupled by the limitation of the overall par-
ticle number. o ;

The evolution of the droplet is.assumed to be a Markovian c%nﬁ:
and death process. If we define P(1,t) as the probability to find
the droplet with 1 particles at a given time t, the following master
equation describes the time dependence of P(1,t) /36/:

P(L, 1) = wh(L-1P(-T, )4 (L+L)P(L+1, )P (1, )W (1) (1] . (2.5)

w" and w™ are the ﬁnm:wwwwo:,unaumuwwwﬁwmm per unit time as also
introduced in (2.4). We define.them.in agreement with former in-

vestigations /30,37/ as follows: .: i

;. S (2.6)
A, = h(2amk,T)7 ! Mm,ﬁ:mnmm;mnouwwm.:m«m length of a free particle
sw*: the ammmms and f; = <Al + B1%# is a potential functien with

mua.>m:ammnm nw:mﬁm:am.ﬁmw<m:;u<,\um\“

1
3 h,/,,|~\u
A=-inPea® | opoyxdZe, ) e
KgT

(2.7

« is a constant with respect to the special properties of the nn@nx
let, like the liquid density c« [particles/m?], the surface tension
© I[N/m] and the temperature T [K] .

Note, that in the case 1=1 it holds /30/:

W) = ML gy L (2.8)

The transition probabilities for processes different from (2.4) are
set equal to zero.
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Fig. 3 Time evolution of a vapor-liquid phase transition in a fini-
te system. P(1,t) is the probability of the droplet to be in state
1. Four different evolution stages, averaged over 500 elementary
processes, are shown corresponding to the (reduced) time a) 7500;

b) 16000; c) 29500; d) 33000. 23 3

vapor: ethanol, T = 290 K, N = 150, V = 2,75°10 m

A computer simulation with the given transition probabilities is
demonstrated in Fig. 3 for several stages of the evolution of the
droplets. :

We can separate two characteristic time scales of the process
(see also /40-42/). In a short time regime a quasistationary distri-
bution for the vapor phase is established around 1=1, while in a
long time regime a distribution around the second stable state eval-
ves by means of the non-poissonian fluctuations. The development
of this stable state just corresponds to the phase transition, be-
cause the.second maximum of P(l,t) is due to the droplet phase.

Transition between the two stable states are possible and will be
discussed in the folleowing.

3. Eguilibrium Distribution and Bistability

The master equation (2.5) allows us to introduce a probability flux
I(1-1,1) = w'(2-1)P(1-1,1) - w (1)P(1,t) , (3.1)

which is analogous to the classical nucleation rate. In the statio-
nary case it holds:

J(1-1,1) = 3(1+1,1) = 3% = const (3.2)

With this condition we receive the stationary probability distribu-
tion in a way given by BECKER and DURING /1/ (see also ref. /6/):

. m +, . m-1
PS(m) = P3(1) .ﬁw+ws { wpv - umhxmm 00, mxl with (3.3)
i= -
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+, .
P - RS B VI
wi(k) j=l+1 w (3

For mmﬁav = 0, that means, m is an absorber state, we get with 1=1
the stationary probability flux

m-4 4 1 -1
1 =P RIRVI0S) K séLL . (3.4)
=2 w(j)

The equilibrium distribution p®(1l) we obtain from (2.5) with the
condition of detailed balance /36/:

w(LIP(L,t) = w (1+1)P(1+1,1) - (3.5)
that means consequently 3% = 0. From (3.3) it yields:
PO(1) = pO1) M WL A (3.6
N j=2 w (D)

with the normalization

N n 4+,
PR = {1+3 11 M|mpmw~w . )
n=z j=2 W (3)

Figure 4 shows that the equilibrium distribution p®(1) is able to
be bimodal in dependence on the thermodynamic parameters. .
The existence of two stable states of P°(1) represents the co-
existence of the wwncwa and the vapor phase in equilibrium. The se-
cond maximum of m (1) defines. the stable droplet size 1_,, while
the minimum of P°(1) .(not to be:seen in Fig. 4) is relatéd to the

P 2100 :

odm” : | 5 ~ —
02 :
| S e

15 ? S0 7 9 60 8010 7 8 M U
Fig. 4 Equilibrium distribution P°(1) for various values of the
system volume V. The maximum states are relative to the vapor
(1=1) and the droplet (1l=1 ﬂv. In dependence of the system size we
find a coexistence of the mwouumﬁ and the vapor
vapor: ethanol, T = 290 K, N = 150
a) V= 2.75-107%%n%; b) v = 2.5-1072%03; ¢) 2.25.107 233

m
d) Vv = 2.00-10"23n> /38/

27



nmwﬁwomwanQUHmﬁmwNmu.m0&3<mwcmww and lop strongly depend ¢

on the values of the thEFmodynamic umntWan /29,39/. :
From a stochastic point of view, transitions between the two

stable states are possible if P (1) is bimodal. The mean first pas-

sage time for the transition between two states 1 and m (m > 1) can

be calculated as follows:

m-1 4 4 i o
tllem) =2 GG oy, P o

In Tab. 1 there is demonstrated the dependence of the mean first
passage time on the initial supersaturation Yo 2.3), which caused
the distinction of the second stable state of P°(1)

Tab. 1 Mean first passage time to reach the critical state Ho and
the stable state Hwﬁ in dependence on the system volume V and m:umnu
saturation Yo /39/

vaoPedy fy 1, |, Tl —1_) (1 — 1) «
2.0 4.79] 9 93 372.7 830.5 :
2.25 4.15| 12 85 1607.3 3333.1 ;
2.5 3.63] 15 75 7237.6 16616.4 :
2.75 3.21| 21 | 63 51761.4 119631.6 :

Further we want to discuss the mwowwma under which thermodynamic
constraints the bimodality of P (1) is just diminishing. That means
a stable droplet is impossible to exist then and we find only a
one-phase equilibrium state.

From the extremum condition for the equilibrium distribution

PPy - pof 4 1y (3.8)

we get with the condition of detailed balance (3.5) and with the
introduced transition probabilities (2.6) the relation:

2
nekp® -1 822 dofnn) 6.9

For the extremum states of P®(l) it follows approximately:

N-0) kg T 26 V(¥ \B _y v
n=—— umﬁiﬁ. m.wingv L= (3.10) .,

Poo

A further discussion of (3.10) /38/ leads to the condition (3.11)
that gives a relation between the critical values of the thermody-

namic parameters N, V and T for which the bimodality of PO(1) is lost:
4 3
NksT 9% _ | ram iw 26 |
witn P<w cmwng 3 CcukgT J - (3.11)
Note, that the equilibrium pressure p, , the surface tension & and

the particle density cy of the liquid depend on the temperature too.
From (3.11) results a critical overall particle number N: respec-

tively a critical system size V_ as well as a critical ﬁmaumnmﬁcnm

T. of the system, where a stabl® coexistence of a droplet in the va-

umw is Just impossible. This fact is a conseguence of the finiteness
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Fig. 5 Critical overall particle number N_ vs. system volume V.
Only for N > N_ is a coexistence of the an%UHmﬁ in the vapor possible.
The dashed-dotfed line gives the saturation particle number N .. =
Poo V/kgT /38/
vapor: ethanol, T = 280 K

Te[x]
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system volume V. If 7 > T., the,

Fig. 6 Critical temperature T Vs
binodal region of the finite“system~is left ' and no nucleationcan
be obtained. ﬁm is Uuow&mn<momu<mwwocm overall particle densities:
a) N/v = 2 10%%073; 4:10%%m73; 0y N/v = 8 1024073 /38/
vapor: ethangl -« .l it : ,

of the system. The region where”a‘two-phase coexistence of the finite
system is possible is shown in Fig. 5 -and Fig. 6. We want to under-
line, that the critical.temperature of the binodal region depends on
the system size too, this fact should become important for small
systems. I

The existence of critical thermodynamic parameters for the nuclea-
tion process permits the calculation of a critical supersaturation of
the finite system /38/ o .




For the initial supersaturation y < y_ the system possesses only one
stable state due to the vapor phase. fn overcritical droplet is not
able to be formed because the pressure of the system decreases faster
due to the attachment of free particles by the droplet, than the
droplet reaches the overcritical size. This effect is caused by the
finiteness of the system.

For y > Yo 8 stable droplet is possible to exist. That means Yo
has to be redched at least initially to insert the nucleation pro-
cess. y_ gives the so called cloud point for the phase transition
in the finite system.

The value of Y. are given in Fig. 7.

@}

o T T T35 T T T 27

107 2 5 10 2 5 17 2 § 0
—=Vif]

Fig. 7 Critical supersaturation y_ vs. system volume V. Yo
the onset of nucleation, the so-cafled cloud point.

For y < y_ a critical droplet is not able to be established.
a) T =280 Ki b) T = 312.15 K /38/

vapor: ethanol

gives

4. Basic Equations of the Competitive Growth Problem

Apart from the concept discussed above, the time evolution of the
phase transition can be described by means of a concentration field
c(T,t), which has to fulfill a reaction-diffusion equation or a si-
milar functional master equation /44/. To avoid the difficulties
in solving these equations, we consider a model where spherical drop-
lets are located in the otherwise homogeneous vapor. Figure 8 (com-
pare Fig. 2) indicates that our assumption of the droplet with a
constant density ca 1is no longer valid for small droplets. If the
droplet radius r has the magnitude of the interface thickness d
(explicitly if r = d_/2) the droplet model breaks down, becaus®
there are no H:ooauﬁmmmwcwm bulk regions. Then one has to take into
account a changing density cy like in Montroll's approach /45/. For
a typical ligquid-vapor system the capillary length is

dy =26 (cu kgD~ 1070 = 1 o, 1)
In the following we use macroscopic values for the constants Cy
(density of monomers within the droplet) c__(oo) (equilibrium con-
centration of monomers), & (surfce tension®df the droplets), T
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C
a) b) c.=const
Ce
r=growth or shrinkage
droplet
\\\ medium
Ce gl L Ceqey
T
T distance L bounded
Fig. 8 monomers
a) The concentration profile of b) The droplet model with an in-

the moving droplet interface and compressible region of bound mo-

the definition of the droplet nomers and free monomers in-the
radius r(t) medium

(temperature), D (diffusion coefficient of monomers) coming from

experimental data. Now our basic guantities describing the system
are

c(t) = My (t)y/v concentration of free monomers (4.2)
£(1,t) = N(1,t)/v cluster density distribution
function (4.3)

where Ms (1) is the number of the free monomers in the volume of the
system V and N(1,t) the number of droplets with 1 bounded particles
respectively. The time-dependent supersaturation characterizing the
monomer phase thus can be written in the form

y(t) = (c(t) - omnAoovv\omnADov =0, (4.4)

where c_ _(o0) is the concentration of monomers in equilibrium with
an Hsmwmmﬁmp< large droplet (planar surface) : omnﬁoov = umn\xmqp
To establish appropriate scales, we may introduce a "characteristic
unit of time"

ty = oy 8h (o)) P 107 = 1 ns (4.5)

for defining a reduced time t= t/t_ instead of the dimensional
time t, and a "characteristic unit 8¢ system size"

- 3 . -23 3 _ . 4 3
Vg = (4m/3)dc \omnﬁoov 2 107%m” = 10 nm (4.6)
to make use of a reduced volume o= <\<D instead of the system size

V.

We choose the number 1 of bounded monomers as the relevant va-
riable for a droplet, but the other quantities describing an l-mer
can be easily defined as follows:

r(l) = (cq bqﬂ\uvnu\www\u radius

k(1) = (cq pqw\uvp\uwlu\w = 1/r(1) curvature 4.7)
v(l) = nuHH volume ’
A(l) = 4 (cy 4 % /3)72/3,2/3 surface

We mention, that the distribution function (4.3) is normalized to
the total droplet density (Ny - number of all drops)

§2(1,0)d1 = N, /v
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and for the first moment of the distribution function we get the to-
tal number of bounded monomers M, per volume

00

hwﬁﬁpydvnHHZKAﬁv\<. (4.8)
(4

In the following, we formulate the basic equations of the competi-

tive growth problem. The droplet distribution function (4.3), which

changes due to condensation and/or evaporation of monomers only, sa-

tisfies a continuity equation of the form

RELY) D (1) = 3(1)

3t 21 > (4.9)

with a growth rate of a droplet of size 1 in the presence of super-
saturation y(t)

dl/dt = v(1,y) . (4.10)

The production-decay term j in (4.9) vanishes when nucleation or
such phenomena like coagulation, splitting, etc., which introduce
new droplets of- a given size class, are neglectable.

Conservation of matter implies that for a closed system the
total number N of monomers (either free or bound) is fixed

0o

c(t) + | 1£(1,t)dl = N/V : (4.11)

H
o

or with (4.4)

y(8) + (egateo T Hira, a1 =y, (5.12)

where y_ =(N/V - nmumﬁuw\omnnguv = const is the overall supersatu-
ration. In a recent paper of VENZL the parameter y_ is time depen-
dent for treating open systems /46/. °

It is well known that growing and dissolving drops obey kinetic
laws resulting from solutions of the diffusion equation. Employing
the quasistationary approximation we assume that an individual drop
grows (or dissolves) if the monomer concentration is greater (or
less) than the eguilibrium value. Therefore the growth law (4.10)

which embodies much of the physics reads in the so-called interface
kinetic limited case

d1/dt = vy (1,y) = 0 dgh Al (e(t)-c (1)), (4.13)

s:mnmﬁ:mmncwwwcnpcaso:oamnno:om:dnmﬁwo: Ce mpvo<mnmncw<ma
surface with curvature k(1) is a

omnﬁwv = omnmoovmxnﬁnowavvn« anAoovmu+aoxﬁwvv . (4.14)

This curvature-dependent expression is the GIBBS-THOMSON egquation
indicating that atoms will flow from regions of high to low curva-
ture.
From (4.13), (4.14) we obtain
- -1 _
dl/dt = Domaﬁoevao ACL (y(t)-d k(1)) (4.15)
and after introducing the critical droplet size Ho by

1(t) = (o 4% /3)(d /y(1)) = nmaﬁzri-u (4.16)

we are able to reformulate the kinetic law (4.10) in the form of the

well-known droplet equation
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dl/dt = 0c®9(e0) (cy a5/  Pay (1713 - 17173y (4.17)
c

which makes apparent the typical bistability situation with oppo-
site behaviour of drops below and above the critical value 1_. We
want to underline, that due to the conservation of monomers m».HHV
the critical droplet size is changing in time. Let us finally intro-
duce a new measure of the droplet size in units of Hn by the di-
mensionless variable

z=1/1_ . (4.18)

Therefore the basic equations (4.9-11) written in dimensionless va-
riables (4.4), (4.18) and reduced time 7T are

3F(z,T) , .2

— 57 (v(z,y)F(z,T)) =0 , (4.19)
vV oo

y(r) + 2 3 ( zF(z, v )dz = Yo o (4.20)
y(T) °

dz/dr = v(z,y,y) = 3y%2?30-2"1 )3y ey sa ) | (4.21)

with the scaled cluster distribution F(z, %) = HnﬁAw.dv instead of
(4.3). This coupled nonlinear integro-differentidl system can serve
as the starting point for the analysis of the competitive growth

problem of different droplets /35/.

5. Growth of one Droplet in a Closed System

Here we want to investigate the deterministic behaviour of one
single droplet in a changing medium which agrees with the stochas-
tic description (chapter 2,3). From the basic equations (4.19-21)
we get in this simple case

dz/dt = u<mNN\uAwuNuw\uv+uw|HNna<\ad\v R (5.1)
y o+ z/Cey’) =y, _ (5.2)
showing the kinetics z = v(z,y,y) (5.1) and the conservation of

monomers (5.2). Recalling the parameter cw = <\<D (4.6) as reduced
system size we reformulate (5.1), (5.2) in the "following form

dz/dr = (3/@)y 222/3(1-27 13y (wyho32) (5.3)

dy/dT

—(3/ew )y 1227312713y (5.4)

and with (5.2) z = €<uﬁ<d|<v we find
dy/dr = 3w 230y 3507 3 )23 (5.5)

The analysis of the development of one droplet (5.3), (5.4) or

(5.5) in dependence of the volume « is shown in Fig. 9 and Fig. 10.
For fixed overall supersaturation Yo = 2 we find a critical vo-

lume @, = pp\ﬁuu<wv = 16/27 = 0,5926 (or V_ = 3,1-107%°n’). For very

small systems (w <, ) we observe free monomers only, but for w >w,
the coexistence of droplets and monomers is obvious. Overcritical
droplets grow to their stable size.
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Fig. 9 Trajectory of droplet evolution in z-y-space in dependence
on the dimensionless volume w

Fig. 10 Plot of supersaturation y vs reduced volume w showing the
coexistence of a droplet and free monomers for z «w,_ and the area

of monostability P

6. Competitive Growth of an Ensemble of Droplets

To find solutions of the basic equations formulated in chapter 4
seems to be impossible. However, if the droplet ensemble consists
of s kinds of drops with different sizes HH“...QH.,...,H , let us
consider the discrete case. So we are ablelto obtdin a mmm&ma of
ordinary nonlinear differential equations governing the constrained
growth of droplets with s> 1 components /35/. Note that the index
1 is now the number of a component; we get a system of equations
(6.1,6.2) which can be solved numerically

di. c_ (oo)V

Te ° Ca GAUD [ omk(1)) - 29T 1 dyy

(i =1,2,...,s) (6.1)
with

c, d
dy _ x g o]
o - -ﬂgiifo-%ii-aoﬁi - (62

Here we abbreviate as follows: Ay (T) - total surface of all
droplets, V4 (%) - total volume of all droplets, <k > - mean cur-
vature of the droplet ensemble.

The equations describe the rapid growth (second term on r.h.s.
of (6.1)) and the slow selection process (first term on r.h.s. of
(6.1)). If the supersaturation is high enough, the droplets have
the chance to grow up. Since the raw material is limited the system
will reach at first a so-called internal equilibrium. When the
flow between the ligquid phase and the vapor is decressing to zero,

a competitive ripening process takes place. In this selection game
the smaller droplets with k(1.) > {k> must dissolve to give mono-
mers to the bigger ones which'increase. Since the mean curvature
<k>(t) is a slowly decreasing function of time in the limit === oo
only one component of the droplet phase is present and the selforga-
nizing system has reached its stable stationary situation (Fig. 11).

It is obvious that our resulting equations (6.1,6.2) are a rea-
listic physically motivated example for natural selforganization.

It was pointed out by EIGEN /47/ and others /48/ that Darwinian
evolution can be characterized by an extremum principle, which de-
fines the behaviour of selfreplicative units. Under stated selec-
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Fig. 11 Time evoluticn of a droplet ensemble showing the monomer
distribution function M(1,t) = 1-N(1,t). Numerical solution of
(6.1,6.2) with s=6 groups of drops

tion constraints in bio- or ecosystems (compare the constant over-
all organization) the population numbers of all but one species
will disappear. In the Fisher-Eigen model of prebiotical evolution

ax. S :
i _ ; =
g = (By - <EX) xy with wmwXH c (6.3)
the species with the highest reproduction rate £ = Max{E v...wmmw

(selection value) will increase to the finite value C and all

others must die out (x '—= 0 for i#m). Note that in both cases
(Fisher-Eigen model with population average fitness <ED> , Ostwald
ripening of droplets with mean curvature of the droplet ensemble
<k>) the interaction of the different species is modeled only by

an overall dilution flux which corresponds to the mean-field concept
of many-body physics /49/. As .we demonstrated, there is an inter-
esting analogy in modeling phase transitions on the one hand and
evolution processes in biophysics on the other.
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Dynamic Chaos in Ensembles of Structures
and Spatial Development

of Turbulence in Unbounded Systems

A.V. Gaponov-Grekhov and M.I. Rabinovich

Institute of Applied Physics, Academy of Sciences of the USSR,
SU-Gorki, USSR

1. Development of Chaos in Ensembles of Dynamic Structures

1.1. Dynamic Structures

Development of spatial instabilities in nonmequilibrium dissipative
media is often a cause of regular formations which appear as ensemble
of identical (or similar) elementary cells or dynamic structures.
Rolls observed in thermoconvection in a plane-horizontal layer,
Taylor vortices in the Couette flow between rotating cylinders, large
vortices in underwater jets, wakes and other shear flows are exam-
ples of such dynamic structures. The onset of developed turbulence

in a nonequilibrium medium is often preceded by several stages of
gradual complication and transformation of the structures. For
example, structures with individual or collective degrees of free-
dom excited against the background of a regular ensemble. First, as

a rule, the structures begin to oscillate: for example, bending os-
cillations of convective rolls or azimuthal waves in Taz+lor vorti-
ces or in toroidal vortices in underwater jets appear. :i+.n, with a
further increase in supercriticality, the coupling betw the neigh-
bouring elements weakens and the resulting nonequilibrium medium can
be considered (in a certain range of parameters) as a discrete en-
semble of interacting oscillating structures.

1.2. Example. Chaotic Self-Modulation of Two-Dimensional Structures
on the Surface of a Fluid at Parametric Excitation

Let us consider transition to turbulence via chaotic modulation of
two-dimensional structures on the surface of a viscous fluid in =
periodically oscillating homogeneous field of gravity /1/. Trar.:.
tion to chaos in oyr experiments was observed on a horizontal sur-
face with about 10" cells-oscillators. Irrespective of the shape of
the boundaries, turbulence occurred against the background of two-
dimensional structures due to their self-modulation that was random
in space and time. We used a layer of silicon o0il 0.5 cm thick on

a plane surface of a vibrator. The surface of the fluid was photo-
graphed in reflected light with subseguent space Fourier analysis
of the image contrast using an optical spectrum analyser.

As the oscillation amplitude of the cells increased the follo-
wing transitions were observed. A regular grating with sguare cells
appeared at the first critical value of the vibration amplitude xnw
The grating was formed by two pairs of parametrically excited tra="t
velling waves (photo a) in Fig. 1). These pairs of waves propagated
orthogonally, irrespective of the shape of the cell boundaries,
thus forming a tetrahedron.

A further increase in R resulted in the appearance of modulation
waves with a space period of the order of the cell size. The direc-
tion of their propagation coincided with that of the parametrically
excited waves forming the tetrahedron. With a still further increase
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